

Report Date: 4/23/2025

	CUSTOMER INFORMATION	GROWER INFORMATION				
Name:		Grower Name:				
Address:		Field ID:				
Phone:		Crop Type:				
Bill To:		Crop Variety:				

Field Name: Home Field	Control		Biological 1		Biological 2		Biological 3		Biological 4	
Microbe Populations										
Number of Genera	1,915		1,847		2,525		2,022		2,485	
Diversity	100%	Very High	100%	Very High	100%	Very High	4%	Very Low	100%	Very High
Evenness	100%	Very High	100%	Very High	28%	Low	0%	Very Low	72%	High
Mycorrhizae Abundance	43%	Medium	33%	Low	40%	Medium	98%	Very High	27%	Low
Fungi to Bacteria Ratio	1 to 2.9	1 to 3.04		4	1_to_3.23		1_to_3.27		1_to_2.66	
Ectomycorrhizal to Arbuscular Ratio	4.73 to	1	5.72 to 1		1.94_to_1		13.05_to_1		1.41_to_1	
Crop Functions of Interest										
Anoxic Environment	61%	High	51%	Medium	57%	Medium	57%	Medium	73%	High
High Oxygen Environment	33%	Low	35%	Low	52%	Medium	66%	High	20%	Low
Low Oxygen Environment	48%	Medium	31%	Low	46%	Medium	85%	Very High	54%	Medium
Carbon Fixation	9%	Very Low	62%	High	73%	High	25%	Low	34%	Low
Organic Carbon Breakdown	46%	Medium	48%	Medium	57%	Medium	71%	High	61%	High
Methanogenesis	65%	High	74%	High	77%	High	52%	Medium	70%	High
Denitrification	62%	High	56%	Medium	69%	High	61%	High	58%	Medium
Nitrification	59%	Medium	80%	Very High	63%	High	29%	Low	80%	High
Nitrogen Fixation	68%	High	50%	Medium	97%	Very High	100%	Very High	70%	High
Organic Nitrogen Breakdown	40%	Low	45%	Medium	65%	High	86%	Very High	56%	Medium
Phosphorus Mobilization	47%	Medium	47%	Medium	64%	High	94%	Very High	54%	Medium
Potassium Solubilization	36%	Low	30%	Low	42%	Medium	56%	Medium	52%	Medium
Nodulating Bacteria	51%	Medium	47%	Medium	46%	Medium	52%	Medium	31%	Low
Sulfur Oxidation	55%	Medium	58%	Medium	81%	Very High	34%	Low	69%	High
Sulfur Reduction	17%	Very Low	28%	Low	62%	High	40%	Low	39%	Low
Calcium Transport	57%	Medium	54%	Medium	79%	High	19%	Very Low	71%	High
Iron Acquisition	45%	Medium	40%	Low	51%	Medium	84%	Very High	37%	Low
Plant Stress Adaptation	42%	Medium	36%	Low	70%	High	55%	Medium	58%	Medium
Rhize Score™	4.79		4.67		4.63		4.93		4.67	

Community structure and function ratings were calculated by comparing the relative abundance of species or genes in the rhizosphere to a large data set of other agricultural samples to generate a percentile, which represents the value in a normal distribution that has a specific percentage of observations below it. Rhize Score is derived from an algorithm that scores the biological potential within the rhizosphere and is reported with a dynamic range from 0 to 10. Rhize Reponse is an algorithm that measures the changes in the rhizosphere biological potential after treatment with a biological input and is reported with a dynamic range between -10 and +10. For research purposes only, the information in this report is not advice, and should not be treated as such. No part of this report may be reproduced without permission in writing from RhizeBio.